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A global existence theorem with large initial data in L ~ is given for the nonlinear 
BGK equation. The method, which is based on the recent averaging lemma of 
Golse et al., utilizes a weak compactness argument in L ~. 
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1. I N T R O D U C T I O N  

The BGK collision model was proposed in 1954 by Bhatnagar, Gross and 
Krook (BGK) 1 and independently by Welander 12/ in the same year. It 
replaces a large amount of the two-body collision details with some 
qualitative and average properties of the original Boltzmann collision 
operator. The BGK equation has played, and still plays, an important role 
in kinetic theory (see, for example, ref. 7). Until the result presented herein, 
however, nothing had been known about existence of solutions to (1.1), 
neither local nor global, not even a near-equilibrium result. 

In 1982 we, 13) using new ideas on semilinear evolution equations 
in weak topologies of abstract Banach spaces, obtained a sequence of 
approximate solutions to (1.1) and its convergence in the weak topology of 
LI(f2 x N3). We were at that time, however, unable to say in what sense the 
limit of the approximate solutions satisfied the original equation. In this 
paper a global existence theorem for the nonlinear BGK equation will be 
proved with initial data in L 1. 

Let f :  s x ~3 _+ ~+ w {0}, where f2 c []~3 is a bounded domain 
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with smooth boundary, x Ef2 is the spatial variable, ~ ~ [R 3 the velocity 
variable, and f(x, ~) represents the density distribution at the point x 
with velocity 4. Denote by D O the set Do={feLl(f2xR3):f>~O, 
(1 + ~ 2) f e LI(f2 x R3) }, and let p(x) = ~ ~ f(x, ~) d~ be the macroscopic 
density, v (x )=~f (x ,~ )d{ /p (x )  the macroscopic velocity, E ( x ) =  
~2f(x,~)d~/2p(x)  the total macroscopic energy per unit mass, 
and T(x)= [ 2 E ( x ) - v ( x ) 2 ] / 3 R  the macroscopic temperature, where R is 
the Boltzmann constant. Define pointwise the BGK collision operator 
J(f)(x, ~)-- v[P(f)(x, ~)-  f(x, ~)] for 

P(f)(x, ?,)- [2~zRT(x)]3/2 exp . -  2RT(x) 

The BGK equation can be written as 

~f -~= -4 .Vxf  +J(f), f(o, x, ~_) = fo(x, ~) (1.1) 

for t ~ R + , x s f 2 , ~ e R  3. 
The BGK collision operator describes a gas tending to a Maxwellian 

distribution. Indeed, the average effect of collisions changes f(t, x, ~) by an 
amount proportional to its departure from a local Maxwellian P. The 
qualitative features of the Boltzmann collision operator--conservation of 
mass, momentum, and energy--are expressed by the equalities 

f Ofl(f) d~=O, a.e. in x (1.2) 
N3 

for i = 0 ,  1, 2, 3, 4 a n d f ~ D o ,  where t) i are the collision invariants 0o = 1, 
0i = ~i for i = 1, 2, 3 (components of 4), and ~4 = ~2. Formally, at least, we 
have also the Boltzmann inequality 

f~3 J(f) log f d~ ~< 0 ( 1.3 ) 

for fixed x, with equality if and only if f =  P(f). 
The collision frequency v can be a function of the local state of the gas, 

i.e., v(p, v, E), thus depending on x and t. In spite of this, for reasons of 
simplicity, v has nearly always been taken to be a constant. For  the results 
to be given here, however, it will be crucial that v is a function of the local 
state of the gas. 

Recently, DiPerna and Lions, (4~ leaning on a new compactness 
argument due to Golse et al., (s~ have proved a global existence theorem for 
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the nonlinear Boltzmann equation. Here, also, we shall exploit the velocity 
averaging lemma of ref. 5, along with properties of the BGK collision 
operator obtained in ref. 3, to obtain global existence for the nonlinear 
BGK equation. 

2. BASIC PROPERTIES A N D  A P P R O X I M A T E  S O L U T I O N S  OF 
THE BGK E Q U A T I O N  

We start with a few definitions that set up the BGK equation (1.1) in 
the framework of semilinear evolution equations. Let 

L~+e2((2 x N 3 ) = -  { f e  L~(s x ~3): ]fflf2-= fro • ~3 ( lq-~  2) [fl d~ d x <  ~ } 

Here ,(2 is a three-dimensional torus~ i.e., ~2 = ~3 /~3 .  The choice of (2 is a 
convenient way to express the fact that we consider the operator 
A f -  -4" V , f w i t h  periodic boundary conditions. It is well known (see, for 
example, ref. 6) that A generates a strongly continuous semigroup T(t) in 
L1(~2 x N3), and that the restriction of T(t) to L11 + ~2(f2 x N3) [also denoted 
by T(t)] is a strongly continuous semigroup in L I~ + ~2(;2 x ~3). For M > 0 
and C e  N we define the set D by 

D =  {feL{+~2(g2xN3):  f>~0, 11.1'0t2~<M, H(f)<~C} 

where the functional H is given by 

H(f) = ff~ • ~3 f l o g  f d~ dx 

Because of the conservation laws, the set D is a natural domain for the 
BGK collision operator. 

We say that a continuous function f from [0, a],  a > 0 ,  into 
D c LI + ~2(f2 x N3) is a mild solution to (1.1) in LI + ~2(f2 x ~3) if it satisfies 

f ( t )=T(f ) fo+ T(t-s)J(f(s))ds (2.1) 

for t s [0, a]. The sense of integration is taken generally in the Bochner 
sense. It will, in fact, turn out to be the Riemann integral in L~+~2((2 x N3) 
for the problem of interest here. 

We give next the velocity averaging lemma of ref. 5. 
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L e m m a  2.1. Suppose that f~ s LI((0, a) x R 3 x R 3) and g,, ~ L~((O, a) x 
R 3 x R 3) satisfy 

Tr fn a~r ~f,, = -~-~- + ~ "V,:fn = g,~ (2.2) 

in ~ ' ( (0 ,  a) x ~3 X ~ 3 ) ,  and the sequences f ~. ~f,,~ and {g,} are relatively 
weakly compact in LI((O,a) xR3xR3) .  Then for all qoEL~((0, a )x  
~ 3  X ~3) the set { ~  ~0f, d#} -- {~R~ ~~ dr is relatively compact in 
LI((0, a) x R3). 

In other words, the velocity-averaged operator Tr  ~ behaves in a 
manner similar to the inverse of an elliptic operator. We recall that Tr -~ 
may be singular only on the set of the characteristic direction. Velocity 
averaging compensates for the lack of regularity in the characteristic 
direction of the hyperbolic operator. 

Next, we state a proposition and a theorem presented in ref. 3 under 
the assumption that the collision frequency v is a constant. However, the 
results in ref. 3 extend in a straightforward way to the case v ~ L~(F) for 
F = - R + x N 3 x N + .  The point is that the set { f . g : f e B ,  g s C }  is a 
relatively weakly compact set of L~(f2 x R 3) if B is a bounded subset of 
L~(f2 x ~3) and C is a relatively weakly compact set of LJ(~? x R~). 

The proposition follows from the lower semicontinuity of the convex 
functional H in L ~, together with the Dunford-Pettis  theorem and the 
conservation laws 1.2). 

Proposition 2.2. D is a convex weakly compact subset of 
Ll(f2• invanant under the semigroup T(t), t > 0 ,  and for each 
sequence {fn} c O there exists a subsequence {f,,,} a n d f ~ D  such that 

for all measurable q~ satisfying I~0(x,~)l~<(l+~;=) k, k < l .  Moreover, 
P(D)~D,  and P is continuous as a map from D m L { + & ( f 2 x R  3) into 
L I  + ~2(~r~ x ~ 3 ) .  

As a consequence of the proposition, the following theorem is the 
main result of ref. 3. 

T h e o r e m  2.3. For each .#oeD and each sequence ~e,j~ ~ with 
0 < G --* 0 there exists a sequence {f ,} of approximate solutions to (2.1); 
i.e., for each n >~ 1 there exists { t~ ~=~ Jv~,~ c [0, a]  with t; = 0, tT+ ~ - t ' /~  G for 

n __ n i= 1, 2 ..... N(n), and t;v~,~-a such that f , ( 0 ) = f o ,  f , ,( t i)eD, and 
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n /1 [/z 1l ~I (a) f , ( t )  = T(t - t, ) f,,(t, ) + ~;: T(t - s) J(f,,( , )) ds for t ~ It , ,  t,+t ) 
t n n .< , ~ ,  n (b) rlf,,( 

(c) r ife(t)-  T(t) fo-~ 'o  T( t -s)J[ f~(7, , (s ) )]  dsll2<<.t'/c, 
for t e  [t;', t','+~), where 7 , ( t )=  t 7 if t~ [t~', t~'+ ~) and 7,,(a) = a 

Furthermore, {f,} contains a subsequence {f,,,} which converges weakly 
in LI(f2 x I~ 3) and uniformly on [0, a] to a limit f,  where f :  [0, a]---, D is 
weakly continuous in L~(,c2 • ~3), 

We note that the integrals above are Riemann integrals in 
Ll+~_~(t? x R~). Theorem 2.3 is valid for any bounded f2~  ~3 with any 
boundary conditions that guarantee A : f  ~ - ~ .  V x f  to be the generator of 
a strongly continuous semigroup T(t) satisfying T(t)D c_ D (for example, 
stochastic boundary conditions). The choice of/2 in this paper is motivated 
by the fact that the velocity averaging lemma is presently known for 
/2 = N3 or for periodic boundary conditions. 

The collision frequency v = v(p, v, E) will be taken throughout as an 
essentially bounded measurable function of the normalized moments. We 
will need one additional assumption. We shall say that the collision 
frequency satisfies the energy saturation condition if v(p, v, E) ~ E ~  O 
uniformly in p and v. An example of energy saturation is provided by v 
with compact support with respect to E. Indeed, since the energy density 
per unit mass is proportional to ~g2fd~/~fd~,  this corresponds to the 
saturation of the energy density per unit mass in the BGK collision model. 

3. PASSING TO THE L IMIT  A N D  THE EXISTENCE T H E O R E M  

We start with the following preliminary result. 

Proposition 3.1. Let {f,} be a sequence of approximate solutions 
to (2.1) obtained in Theorem 2.3. Then there exists a subsequence {f~,} of 
{ f ,  } and a weakly continuous function f from [0, a] into D c L ~ (/2 x N3) 
such that 

f~3 ~j~' d~ ~ f~3 ~ f  d~ 

a.e. in t and x and for all measurable ~ with pO(x, 4)1 ~< c(l + ~2)k, k < 1. 

Proof. By Theorem 2.3, after passing to a subsequence if necessary, 
f n ( t ) - - * ~  f ( t )  weakly in LI(f2 x 0~3), uniformly in t, where f :  [0, a] 
D c LI(f2 x N3) is weakly continuous. 
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Observe that 

h.(t) = r ( t ) f o  + T ( t -  s) J(fo(vo(s))) ds 

is a solution in ~'((0,  a) x f2 x ~3) to (2.2) with gn = J(fn). By Theorem 2.3 
and Proposition 2.2, {h~} and {gn} are relatively weakly compact sets in 
L J ((0, a) x f2 x ~3). Thus, by Lemma 2.1, for each 0 e L'~((0, a) x s x R 3) 
the set {J~ 0h,  d~} is relatively compact in L'((0, a )x  s Also, by using 
property (c) of the approximate solution and the fact that e, ~ 0, the set 
(~3Of ,  d~} has compact closure in Ll((0, r ) x f 2 ) .  Finally, since 
IIf,]l 2 ~< M < ~ for n >~ 1, this last assertion is also true for each measurable 
0 with [~(x, ~)1 ~< c(l + ~2)k, k < 1. This completes the proof. | 

It is important to notice that one cannot show ~3 ~2f~, d~ ~ ~3 ~2f d~ 
a.e. in t and x directly from the velocity averaging lemma. This has signifi- 
cant consequences, in particular, for the Boltzmann equation, and is reflec- 
ted by the failure of the DiPerna-Lions proof to demonstrate conservation 
of energy. In fact, their proof fails for scattering potentials with 
B(O, IV[)~IV[ 2, i.e., with the second moment explicitly built into the 
collision operator as is the case for the BGK equation. 

P r o p o s i t i o n  3.2. Let {f,} be a sequence of approximate solutions 
to (2.1) obtained in Theorem 2.3. If the collision frequence v satisfies the 
energy saturation condition, then for some subsequence {f,,} of {f,}, 
~3 ~2f,, d~ converges a.e. in t and x. 

Proof. First, we observe that, by Proposition 3.1, for each R > 0 the 
set {Jl_~l 2 <.R ~ f~d~} has compact closure in LI((0, a)xf2) .  Therefore, in 
order to obtain the desired convergence it is enough to show that 

2fn d~ dx dt ~ 0 uniformly in n >t 1 
flr > R 

Property (c) of the approximate solution and Gronwall's lemma 
applied to 

imply that it is sufficient to show 

A(n, t, R) = ~2T(t - S){ (vP)[fn(Tn(S))] } ds d~ dx ~ 0 
I~1/> R 

(3.1) 



Nonlinear BGK Equation 1319 

uniformly in n ~> 1 and t e [0, a]. After easy but tedious integration, we can 
obtain 

I l" M n 
A ( n , t , R ) = 4 z [ t d s [  dxv(pn, v~,E,) e~p~] ~ z.3/;e--'dz 

+ 4v"(e"P")i/2 Jo ze-= dz + 2v:p~ Jo z'/2e-~ dz 

+ jo d, ] dx,(0., e.) 

E f" ;2 x e,,p~ 23/2e -~ dz + 4v,,(e~p~) ~/2 ze -= dz 
, + 

Mf 

f" 1 z)/2e -"- dz = I  +I+ (3.2) 

where p , ,=~3Ld~,  t , ,p ,=~3~C,,d~,  .~ - -  [;n~ 

and M f  =(Iv,  I ++_R)2/e,. Since E,>>-R/2 for all n~> I in the term I , the 
assumption on v implies that I ~ 0 as R --, oo. The term I+ can be written 
a s  

I+ =47rf]ds{f j  d x + f j  dx+f~ }v(pn, v ~, 3dx E,,)[ . - . ]  = L l  +L2  +L3 
1 2 

where A1 = {x: Iv, I ~> x/~RR}, Z / z =  {X: IVnl ~ x / - R ,  E,>~R}, and A 3 = {X: I/)nl 

<<.x/-R,E,,<~R}. The terms L1 and L2 approach zero as R--* oo by the 
same argument that was applied to I .  On the other hand, L 3 ----~0 as 
R ~ oo because in this term we have M + >>. R/2. | 

T h e o r e m  3.3. Suppose the collision frequency v satisfies v e L~'(F) 
and the energy saturation condition, and fo e D. Then there exists a global 
mild solution to the BGK equation in Ll+~2(f2 x N3). 

Proof Propositions 3.1 and 3.2 imply that for a.e. s e  I-0, a] the set 
{J(fn(?n(S)))} has compact closure in L~(s x N3). The strong continuity of 
T(t) in L~(f2xN 3) implies that the set {kn} is relatively compact in 
LI((0, a), L~(g2 x ~3)). where 

k,(t)-= T ( t - s )  J(fn(?n(s))ds for t e [0, aJ 

By property (c) of the approximate solution, the set {f , ]  is relatively 
compact in L~((0, a), Ll(g?x N3)). Therefore, there exists feLl((O,  a), 



1320 Greenberg and Polewczak 

LI(Qx~3))  with f ( t )~D a.e. in t and such that, after passing to a 
subsequence, if necessary, 

s ?'2fd~ a.e. in t and x 

Next, by using the dominated convergence theorem for the Bochner 
integral in LI(Q x ~3), we obtain that in L~((0, a), LI(f2 x R3)) 

f( t)  = r(t) fo + T(t - s) J(f(s)) ds (3.3) 

where the integral is the Bochner integral in L~((2 x R3). This equation 
implies t h a t f i s  continuous from [0, a] into D c LI(f2 x As). Therefore, by 
conservation of energy, we conclude that f is continuous from [0, a] into 
DcLI+~2(f2xR3). Thus, since J is continuous as a map from 
DCLll+r 3) into LI+~_~(f2xR3), f is a mild solution to (2.1) in 
Lt~++2(f2xN3), and the integral in (3.3) can be taken as the Riemann 
integral in Lll++2(f2x R3). | 

C o r o l l a r y  3.4. The solution obtained in Theorem 3.3 satisfies 
energy conservation: [If(t)]12= [I foil2 for t e  [0, a]. 

C o r o l l a r y  3.5. If v e L~-(F) and one of the higher moments o f f ,  is 
uniformly bounded, i.e., 

I~1 f,, dg dx d t - M ~  <c < oo (3.4) 
3 

for some fixed k > 2, then there exists a global mild solution to the BGK 
equation in Lll + +2(f2 x ~3). 

Indeed, the boundedness of the sequence r ~ k ~  leads to the "1. I v 1  n f n = 1 

compactness of the closure of the set {S~+ ~2j), d~} in LI((0, a )x f2 )  and 
consequently, after passing to a subsequence if necessary, to the estimate 

f2 m3 ~ fn' de ~ 3 ~ 2f d~ a.e. in t and x 

The condition in Corollary 3.5 is independent of the energy saturation 
condition. It is, however, related. Indeed, with the help of the Gronwall 
lemma, property (c) of the approximate solution, and the boundedness of 
~Sa• the sequence {M~},~ 1 is bounded if the sequence 

k ::o {L (t, f , )} ,=~ is bounded uniformly in t e  [0, a]. Here Lk(t, fn) is given by 

Lk( t , f . )= leg k r ( t -  s)(vP)[f.CT.(s)] d~ dx ds 
~3 
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An easy integration shows that L~(t, fn) is a sum of terms that are equal 
or bounded by 

(~3 f~)k,2_ I vdxds 

But, for example, if v ~ L ~(F), k > 2, and v(~, fl, 3) ~ (6 k?-- 1) ~ for large 
uniformly in c~ and fl, then a bound on Ck(fn) can be obtained. 

In closing, we note that under the conditions of Theorem 3.3, the 
sequence of approximate solutions [f~} converges strongly in the space 
L~((O, a), L'~ + ~2(f2 x ~3)) to a mild solution f e  C([0, a], L1+~2(s x N3)). 
This contrasts with the (weak) sense of convergence of the sequence of 
approximate solutions constructed by DiPerna and Lions in the case of the 
Boltzmann equation. Actually, their notion of a solution is much weaker 
than the notion of mild solution in ~ ~3 L T +~2(~2 x ) obtained here for the 
BGK equation. Finally, as noted earlier, energy conservation is not yet 
known for the DiPerna-Lions solution to the Boltzmann equation. 

N o t e  A d d e d  in P roof .  After the completion of this work, B. 
Perthame provided in a preprint a short proof that the moment bound 
(3.4) is always valid for k =  3 if it is satisfied by the initial datum fo(x, ~). 
Therefore, according to Corollary 3.5, for such initial conditions the energy 
saturation condition is not necessary. 
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